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1. INTRODUCTION

This report documents the Software Partitioning Schemes for the
4 Advanced Simulation Computer Systems Study performed by Teledyne Brown
Engineering (TBE) under Contract No. F33615-78-C-0013 for the Air Force
Human Resources Laboratory (AFHRL). The report contains five sections.
Section 1 introduces the study objectives, background, approach, and re-
sults. Section 2 defines the software partitioning problem enviromment,
partitioning goals, and alternative approaches. Section 3 presents the
technical details of the resultant software partitioning algorithm
developed and manually demonstrated under this contract. Section 4
addresses implementation considerations and recommends a schedule of
tasks for algorithm automation verification and validation. Section 5

concludes with a brief recapitulation of the study findings, related 3
work, and areas of further study.

1.1 OBJECTIVES " |

The overall objective for this study was to design software
partitioning techniques that can be used by the Air Force to partition a
large flight simulator program for optimal execution on alternative mul-
] tiple processor configurations. In particular, the Air Force needs a
software partitioning algorithm for use in conceptualizing, manipulat-
ing, and evaluating candidate flight trainer computational designs.
Major design objectives pursued by TBE in deriving the software parti-
tioning algorithm included emphasis on potential automated steps, manual
feasibility demonstration, and recommended implementation steps for its
use by the Air Force.

1.2 BACKGROUND

It has been evident for some time that significant increases in
computer system performance may be realized by using two or more smaller
processors connected in parallel, as opposed to one large processor.
This concept has been utilized in many real-time flight simulators where
each of several computers performs a specific task. Future trends are
toward further expansion of this concept to include not only tasks that
may be executed in parallel but also tasks that must execute serially
because of temporal relationships. This causes many multiple processor
configurations to be applicable to flight training simulators and com-
plicates the problem of allocating the software among the processors.

Typically, the design of a computer system is an iterative pro-
cedure. Certain portions of the hardware and software can be designed
independently, but the remaining portions must be designed interac-
tively., With the rising cost of software, it has become more and more
important to know the effect of computer hardware design on the design of
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the software as well as the effect of the software design on the selec-
tion and interconnection of the hardware to develop the optimum design
for the computer system.

This study has pursued the development of an algorithm that will
facilitate the partitioning of both parallel and sequentially dependent
tasks to a given hardware configuration. The algorithm has the potential
of being automated.

1.3 APPROACH

This study was comprised of three phases: Phase I - Literature
Search, Phase II - Simulator Analysis, and Phase III - Algorithm Design
and Demonstration. This three-phased approach provided a logical
sequence of research and analysis that resulted in the delineation of the
partitioning technique presented in this report.

The Phase I literature search focused on current documentation
in two major technical areas. The first area concerned fiight training
simulator computational subsystem designs. The second area addressed
software partitioning schemes for allocation of parallel and serial
application tasks to advanced multiple processor configurations.

The .Phase 11 effort was subdivided into two parts. The first
part was the analysis of literature collected to properly identify the
software partitioning goals with respect to flight training simulator
designs. The second part was the selection and expansion of the specific
approach for the techniques to be applied in the algorithm design to
achieve the design goals. Partitioning approaches considered included
manual allocation schemes, real-time dynamic task allocation schemes,
and a mathematical goal program statement of the allocation problem. The
mathematical goal program model approach was selected because of its
potential for systematically obtaining optimal partitions and related
quantitative measures in an automated mode, which are responsive to
alternative candidate design features. The features and measures that
can be modeled are described in Section 3 in terms of the mathematical
model, algorithm design, and algorithm feasibility demonstration. Model
measures include task sizing and timing; processor utilization; memory
storage, retrieval, and sizing; and real-time task constraints and
relationships.

Sowme problems were encountered in pursuing the Phase 111 design
to implement the mathematical goal program model when allocating a large
number of tasks and data blocks to a large number of processors, memo-
ries, and peripherals comprising the candidate configuration. It became
evident that a heuristic goal program algorithm needed to be designed
that interfaces with a linear program optimizer to obtain “good" task
partition allocations for large partitioning problems. TBE's Input/
Output Requirements Language (IORL) supplemented with flowcharts was
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used to delineate the algorithm design and provide the steps for perform-
ing a manual demonstration of the algorithm's feasibility.

1.4 RESULTS

One of the most important results of this study was a mathemati-
cal model defining partitioning parameters and measurements. From these
parameters, a set of guidelines has been recommended for the establish-
ment of a centralized automated flight training simulator computational
design data base repository for the Air Force. These design parameters
address five major areas, including flight training simulator computa-
tional interface requirements, baseline software task/data descriptions
(independent of hardware implementation), candidate hardware configura-
tion specification, a technology data base, and (most important) design
evaluation user interface data options. These parameters along with the
partitioning mathematical model provide steps for the implementation of
an automated partitioning algorithm for real-time simulators. Detailed
recommendations for algorithm implementation are provided in Section 4.

Section 5 expands TBE's findings, including related aspects of
our Advanced Multiple Processor Configuration study contract encompass-
ing areas for further research and development. In the multiple proces-
sor area, the impact of heterogeneous processor configurations and
potential reconfiguring capabilities is currently being investigated. A
major area for future study is the impact of higher order architectures
on partitioning allocation.




2. SOFTWARE PARTITIONING

To develop the software partitioning algorithm design goals, TBE
addressed the definition from both general system software design and
particular flight training simulator software design viewpoints. This
section supplies the basic definition of the software partitioning
enviromnment, the design goals selected for flight training simulator
software partitioning features, and alternative approaches considered
during this study.

2.1 PARTITIONING ENVIRONMENT

To fully appreciate the software partitioning environment and
its associated steps, one must first examine its relationship with the
system life cycle. Then, flight training simulator system life-cycle
peculiarities must be considered. The questions posed by this study in
both these areas concerned the identification of the software applica-
tion task features that are peculiar to advanced real-time simulation
computational systems and that influence the software design partition-
ing process. The system and flight trainer life cycles are now described
for the general system, followed by a description of the flight training
simulator software partitioning features. Emphasis was placed on iden-
tifying software features that characterize an optimal partitioning
scheme and that account for alternative candidate configurations and
provide partitions that meet real-time load balance constraints.

2.1.1 System Life Cycle

Figure 1 depicts the major phases of a system development
effort. The development phases that directly relate to or influence
software partitioning include subsystem interface requirements, sub-
system functional specification, and subsystem detailed design. In
addition, during the operational maintenance of the system, any changes
that are deemed necessary (to either correct for a design deficiency or
oversight, or to implement an expanded capability) imply that a reparti-
tioning of tasks may be needed to accommodate the required change. This
phasing relationship to partitioning holds for any system, whether it is
an aircraft, computer center, air defense system, ..., or a flight train-
ing simulator system.

For purposes of this study, the detailed design phase was
selected as the major area where software partitioning parameters become
known. Prior to this phase, a system partitioning is generally performed
to denote the major subsystems and their respective interface functions.
After the detailed design phase, actual hardware is procured from which
prototype build implementation is initiated. Therefore, the detailed
design phase has the greatest influence on mapping software tasks to
hardware and vice versa.

10

— e pa———




Required operational capability

Y

Conceptual System
system development
System
requirements
d Change .
. ‘ required ]
Interface and ? l
subsystem -
requirements
| Operations and d
I maintenance g
HW SW ¥
Subsystem Procurement s
deve lopment :
|

; System
--I Functional Io- —a
if i ; acceptance
specification testing

] i 5
%-—FJetailed design jee— .

Integration and ‘
Lol verification ‘_J ‘
Build, debug, an testing 3
o verification —

testing

HW

1 Figure 1. The system life cycle addresses partitioning at subsystem,
: function, and detailed design phases for new and/or modi-
fied system development efforts.
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The design of a multiple computer system traditionally has begun
with the hardware selection. Once the computer system has been selected,
the development of software begins. During development and even after
the system is installed in the field, there are various modifications to
both the hardware and the software. Because software has traditionally
lagged the hardware development activities, the hardware has had a
direct influence on software partitioning. As the details of the soft-
ware tasks become known, projected hardware resources are typically
found to be inadequate, which necessitates the acquisition of additional
processors and/or memories to meet system interface requirements. A
software partitioning algorithm must be able to address software appli-
cation design parameters, which are independent of a particular hardware
configuration, to permit a variety of design tradeoffs to be evaluated
for alternative candidates prior to the exact configuration selection.

Once a system enters the operational phase, maintenance becomes
the prime cost factor (indeed, maintenance cost is the largest cost of
the system life cycle). Change and configuration controls are necessary
for a system or subsystem of any significant size. As technology
advances, new software and hardware architectures may need to be imple-
mented. A tradeoff must be made to decide whether to convert or totally
redesign existing software. A software partitioning algorithm should
provide useful information regarding allocation of current baseline
software design tasks to the new or modified hardware architecture. As
with design development, software partitioning in the operational main-
tenance phase addresses the design details of any proposed changes.

The key factor for flexible software partitioning (from the sys-
tem life-cycle viewpoint) is the ability to define software design
attributes in terms of the dependent application software task/data flow
relationships. The software attributes should remain independent of,
but be mappable to, a particular processor architecture. The prolifera-
tion of requirements languages (RLs) and higher order languages (HOLs)
is a testament to this emerging philosophy in the DOD community. The
distinction between an RL and an HOL is that RLs are not currently
automated to the extent of target machine code generators for the RL. An
HOL such as JOVIAL, HAL-S, or PL-1 supports interpretation, data manage-
ment, and code generation from machine-independent HOL source code to an
intermediate level language that can then be specifically translated to
any one of the languages supported by different target machines. Once
the tasks have been defined in a suitable RL and HOL, the problem still
exists as how they can best be partitioned or allocated to the candidate
architecture. Once allocated, the resulting partition should be evalu-
ated in terms of predicted performance and cost/risk assessments by a
software partitioning model. Iterative feedback from this performance
evaluation model can then be used to perturb the partition based on
performance penalties to derive a well-balanced software execution
sequence.

12
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2.1.2 Flight Trainer Life Cycle

In addition to problems associated with the general system life-
cycle environment, the simulation training system environment offers
special considerations and problems with respect to software partition-
ing. Aircraft systems are continuously being upgraded, and this causes
changes to training requirements. Manual interfaces change when new or
modified weapons systems, embedded onboard computer systems, and opera-
tional tactical policy changes are introduced. These problems are
really no different from problems encountered during the maintenance
phase of the actual system. The key issue is when and how actual system
changes are received, evaluated, and introduced into the training
requirements.

Actual system test and performance measurement tools can and
should provide useful inputs for simulator training software required to
support the new/modified devices. In the case of embedded computer sys-
tems, simulated training scenarios could provide additional reliabilicy
tests of the actual onboard computer systems as well as the prime goal of
training personnel. As a result of these considerations, the partition-
ing algorithm should facilitate modular design definition input changes
and permit new technology configurations to be introduced as needed to
support a given evaluation. This should also include the ability to fix
allocations of certain functional tasks, such as a set of onboard com-
puter tasks, while permitting others to be alldcated by the partitioning
algorithm.

AFHRL supplied a benchmark problem and the detailed design docu-
ments and source code listings from the Advanced Simulator for Under-
graduate Pilot Training (ASUPT, now known as Advanced Simulator for
Pilot Training (ASPT)). These documents were analyzed to obtain esti-
mates on the complexity and sizing of flight simulator software parti-
tioning. This analysis identified 50 major application (both real-time
and support) tasks (some of which would be duplicated to support multiple
training stations, instructor consoles, weapon systems, and aircraft
models). The results of this analysis were presented at an interim
briefing.

It should be noted that a task is related to the application.
Its ultimate operational realization may be software, firmware, hard-
ware, or a combination of these, depending on the selected design config-
uration. The tasks being considered for the partitioning algorithm are
related to the computational subsystem of real-time flight training sim-
ulators.

Further analysis revealed that the trainer computational sub-
system is really comprised of a set of smaller functional subsystems,
such as simulator facility control, visual computational support, and
simulated aircraft mathematical models; thus, the number of processaors
and number of tasks for which selected software functions are being

13




allocated is reduced to approximately 30 tasks to three processors using
a common, shared multiport memory. In summary, flight trainer computa
‘tional configurations have both a functional partitioning of processors
and a task partitioning within each functional processor group.

2.2 DESIGN GOALS

Software partitioning of tasks to alternate candidate multiproc-
essor configurations must be a systematic process based on measurable
evaluation goals. The selected design goals for the partitioning algo-
rithm developed are as follows:

(a) With software system task flow inputs given, partition
tasks to a user-specified multiprocessor hardware configu-
ration subject to input constraints

(b) 1ldentify interdependencies among the tasks that require
communication links

(¢) Incorporate dynamic performance evaluation feedback to
determine the best partition to preclude system deadlocks
and account for critical path task precedence orderings

(d) Provide a means of balancing the processing load as a func-
tion of processor utilization, which is evenly distributed
among the processors such that no one processor is satu-
rated while others remain idle for appreciable periods of
time

(e) Provide cross reference of task(s) assigned to each proces-
sor and processor(s) assigned to each task

(f) List critical constraints when a valid partition is not
obtainable

(g) Provide a development cost estimate as a function of task
sizing and instruction mix, which is related in terms of
assigned candidate processor language compilers and debug
tool measures.

In deriving this set of goals, several issues have been dis-
cussed pertaining to the evaluation enviromment in which the partition-
ing algorithm is to operate. The baseline set of questions was:

(a) At what point(s) in the system development cycle is the
algorithm to be used?

(b) What timeframe and computer resources are anticipated for
candidate evaluations?
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(¢) To what extent will the system requirements be formatted?
In what format?

(d) To what extent will the alternative candidate design con-
figuration be documented? In what format?

The answers to these questions relate directly to the level of
software partitioning and types of system parameters that can be
modeled, allocated, and measured. In summary, there are no definitive
ansvwers to these questions since each flight trainer evaluation tends to
be tailored to specific needs. This does not mean that systematic
methodologies and standards do not exist, but they do differ from one
project to another. The potential use of an automated partitioning
algorithm will require systematic collection and development of flight
trainer requirements, software specifications, and candidate configura-
tion inputs. This contract has concentrated on the definition of parti-
tioning algorithm logic in terms of design inputs which are transformed
via technology data and user evaluation options to assist and assess the
partitioning of tasks for a given candidate configuration.

2.3 ALTERNATIVE APPROACHES

Software partitioning to date has been primarily a manual proc-
ess based on experience gained in development of previous flight simula-
tors. The designer community continually evolves and improves partition
allocations using projected resource requirements and implementing the
partition to see how well it performs. In some cases, real-time alloca-
tion is determined by a master computer using a predefined assignment
scheme that incorporates certain dynamic application considerations.
These schemes, whether manual or partially preprogrammed controlled, are
not easily automated, since they generally require that a specific sys-
tem allocation be implemented for a given configuration. Manual projec-
tions are limited to a few alternatives for a given type of configura-
tion, but they must be redone for alternative configurations.

In surveying potential automated models to meet the design
goals, the basic problem to be solved is one of distributing the software
system tasks and related data blocks to a candidate hardware architec-
ture network such that a representative stressing simulation load is
handled. 1In general, this type of problem is typical of mathematical
programming problems addressed in an operations research (OR) environ-
ment. Within this field, there are a variety of algorithms. The follow-
ing are some of the more familiar:

1. Transportation problem of product transport from production

locations to warehouses and customer distribution centers to
meet customer demand at minimum cost.
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Traveling salesman optimal route determination to service
customers

3. Knapsack packing of items required for a camping trip to be
distributed evenly among campers

4. Capital budgeting problem of choosing among independent
investment alternatives to maximize return subject to cur-
rent investment fund constraints

5. Machine shop production scheduling to meet product demand
deadlines with minimum machine restructure between jobs and
given employee mix.

The software partitioning problem has attributes similar to each of
these.

In the case of the software partitioning problem, a descriptive
statement of the model is as follows:

1. Find a partition that best satisfies alternative evaluation
priority functions:

a. Balance the processing load among the processors
b. Balance the memory storage utilization
¢c. Minimize development costs.

2. Subject to:

a. Real-time task resource requirements
b. Predicted performance simulation feedback.

When defining a software task partitioning model, a number of
factors must be considered. The model can very quickly get out of hand
in terms of size for current optimization techniques. Thus, the model
design developed under this contract restricted itself to a static allo-
cation problem that is mathematically stated as a linear goal program
problem in Section 3.1. It is static in that it is a generalization of
the real-time application tasks to be allocated to a given candidate
configuration. 1In this sense it is not a dynamic real-time allocation
algorithm. The static model is very useful in the candidate design
evaluation mode, since many numbers are based on predicted task sizing
and timing plus anticipated computation iteration frequencies to support
given training loads. The static model permits average to worst-case
growth analysis in a systematically controlled evaluation eavironment,
which provides the means to ensure a complete design description has been
input and independently provides a measure of processor utilization,
memory utilization and predicted software development cost.
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Even in the static model enviromnment, optimization data base
sizing and numerical roundoff problems are encountered for evaluation of
a computational system involving much more than three processors, 20
tasks, 40 data blocks, and four memories. Specific sizing is addressed
in Section 3.2. For this reason, a heuristic model has been designed. A
heuristic model is a means of limiting computations to a logical sequence
of iterative improvements via allocation tradeoffs until a certain
objective level is either found to be feasible or a bottleneck has been
isolated.

This section has discussed partitioning considerations. The re-
sultant algorithm design details are highlighted in Section 3. Imple-
mentation considerations are given in Section 4. Section 5 incorporates
areas for further research with respect to optimizer techniques and data
base selection.




3. MODEL DEVELOPMENT

Software partitioning model development is presented from three
different technical viewpoints in this section, including the mathemati-
cal definition, the detailed design highlights, and a feasibility demon-
stration synopsis. The model is expressed in generic computational
system terms where the major components are tasks, data blocks, proces-
sors, and memories that are partitioned to service an external baseline
load environment. The mathematical model definition delineates all the
parameters and the basic relationships that must be satisfied for a valid
partition. It also provides a statement of objective functions that
permits optimization of the partition when the basic relationships are
found to have a feasible solution (i.e., a feasible partition).

The algorithm design highlights are presented here in terms of
the systematic procedural step features with cross-references to
detailed appendices. Appendix A provides user input information. Out-
put report formats are provided in Appendix B. Appendix C contains the
feasibility demonstration that emphasizes the user environment of input
formulation, critical intermediate step results, and final output summa-
ries. Detailed computations and design logic are enumerated in
Appendix D.

3.1 MATHEMATICAL STATEMENT

This mathematical statement provides mathematical terminology
and definitions for alternate evaluation priorities and constraint form-
ulation based on a generic statement of a candidate configuration for
which a set of software tasks are to be partitioned. Each mathematical
symbol is defined when first introduced. In addition, Appendix C con-
tains a master list of mathematical symbols and related design defini-
tions. A special effort has been made to use a unique symbol for a given
entity. It utilizes a combination of symbol definition with a combina-
tion of linear programming and goal programming model formulation termi-
nology. Although knowledge of thes» modeling and solution techniques is
helpful, it is not essential to the understanding of the basic expression
of the software partitioning problem model.' The solution techniques
with respect to the software partitioning model are considered in the
design highlights of Section 3.2. The model is now stated.

3.1.1 Mathematical Terminology

The mathematical model formulation permits the major decision
varisbles to be enumerated in terms of a baseline software load for a

'Ignizio, James P., Goal Programming and Extensions, D. C. Heath and Com-
pany, Lexington, Massachusetts, 1976
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given real-time interval of length, 7. In the case of the flight
trainer, 7 might be chosen to represent the maximum time permissible for
a complete real-time cycle. The baseline load could represent a
stressing training mix of tasks and data relationships that must be
performed to support the given trainer facility exercise; for example, a
two-on-one, air-to-air, combat maneuvering situation may be selected.
For more detailed partitioning loads, 7 could be selected to represent a
specific segment of the real-time cycle to further analyze and partition
parallel versus dependent task/data flow relationships.

The major decision variables (outputs of the algorithm) with re-
spect to software partitioning allocation are defined as follows:

xtp = 1, if task t is assigned to execute on processor p

= 0, otherwvise

e - number of task t executions on processor p for the
tp . . .
evaluation problem time period
ytp ~ development cost to implement task t on processor p as

currently partitioned
s,p = 1, if memory storage m contains block b
= 0, otherwise
hp - number of memories where block b is stored

- number of times 1input block i of task t is input for

a___.
mpti task t on processor p from memory m.

- number of times output block o of task t is written or

w
mpto updated by task t on processor p to memory m.

These outputs are determined for a given set of software task and candi-
date architecture inputs. The basic algorithm control inputs are
denoted by:

T - number of tasks to be allocated to processors

P - number of processors

M - npumber of memories

B - number of distinct storage blocks to be allocated to memories
(this includes instruction and data blocks)

19
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Q - number of communication links

B - maxiwum number of input and/or output blocks per task.

The values of these parameters control the overall algorithm sizing,
timing, and looping logic.

The baseline task load may be represented as configuration-
independent, processor-dependent, and memory-dependent input parame-
ters. The configuration-independent input parameters are defined as
follows for each task, t:

N - number of times task t is to be executed during the evalua-
tion interval, 7, for which partitioning is being dome

S_ - maximum time limit per task t execution

I, - number of distinct input blocks for task t

4,. ~ global data block index for task t input block i

A_. - percent of information input for task t from block i
O0_ -~ number of distinct output data blocks for task t

0__ = global data block index for task t output block o

Q,__ - percent of information output from task t to block o.

to

The processor-dependent task inputs are defined as follows for
task t on processor p:

ctp - time for task t execution on processor p |

1

- resource task management coefficient for task t on proces-~

sor p if time or data enabled task (these tasks require

periodic enablement or polling by the processor to which
they are assigned)

L

o

~ resource task management per task t execution on processor :
p for slaved enabled task (these tasks are enabled by
another task)

rtp
d__ -~ the cost coefficient for developing task t to run on proc-

tp essor p independent of allocation

6t - the cost coefficient for resource management of task t
P development on processor p.
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Section 4.2 discusses the implementation means for computing these
values based on independent task descriptions, processor configuration,
and a technology data base. The mathematical model assumes that these
values are known.

In addition to the task-to-processor allocation relationships,
the storage allocation of blocks to memories operates on a similar con-
cept. A master block list of distinct data and/or instruction blocks is
independently defined and then mapped via the candidate configuration
and technology memory parameter inputs to supply the following parame-
ters with regard to block b, memory m, processor p, and communication
link q:3

d b~ length in bits of block b when stored in memory m

m
Lm - length of memory m in bits
ahp = 1, if access from memory m to processor p exists, i.e.,

there is at least one access link q for m and p
= 0, if otherwise

%o bits/second transfer rate from memory m to processor p
P based on statistical composite of access links for p and m

Qm = 1, if processor p is permitted to change contents of
P memory m, i.e., there is at least one write access link q
from p tom
= 0, if otherwise
Wop bits/second transfer rate from processor p to memory m
P based on statistical composite of write access links for »

and m.

The task relationships to these blocks are defined as part of the real-
time constraints in Section 3.1.5.

3.1.2 Processor Utilization and Crowth Balance

Given the mathematical terﬁg defined in Section 3.1.1, the proc-
essor utilization, U, associated with a partition may be expressed as
follows (for each prdécessor p=l to P):

T
1 2 .
U = —— (e, ¢+, )e task computation
P T =1 [ tp tp tp and resource

management time




(2]

> AZ

i1 ti o) th mti mptl task in?ut
processing
ot
-1
+
2 ﬂtoz “wplmto“mpto task output
ot m=1 processing
+ Rtp xtp] . task resource
management

An absolute constraint is that:
Up.s 1 for p=1 to P.
In other words a processor, p, cannot be more than 100% allocated.

The objective function for processor balance may be written:

p-1 P ,
Minimize Z Z |Ui - U, . Minimize differences
i=1 jmiel J in processor loads

It should be noted that the presence of absolute values implies a non-
linear objective. The processor utilization balance can be mapped (via a
ranked ordertng of the U » Ué such that U, *> U.') to a linear objective
for a given partition. j

This objective statement assumes that perfect balance is the
ultimate or optimal partition. The candidate design being considered
may represent only a portion of a bigger design evaluation problem. 1In
this case, the use of certain processors may be favored, whereas others

" - should not be considered. To handle this more realistic partitioning

situation, each processor has two additional parameters, which are user-
specified:

lP - absolute upper limit for processor p's utilization




Gp -~ goal or target limit for processor p's utilization,

With these additional parameters, the following constraints apply:

G. < L Goal must be
P P less or
equal to the
absolute limit.
Up < LP Each processor

must be below
its absolute
limit.

The objective for the optimal partition in terms of processor utiliza-
tion becomes:

P-1 P
Minimize E z (U;-6,) - (uj-oj) .
i=1 j=iel

This basically states that the processor utilization is in balance with
respect to user-specified goals. In the case of a flight trainer soft-
ware partitioning evaluation, G, could reflect a percentage that allows
for future growth. Thus, G J)O.GO reflects a 40X growth factor for
processor p. P

The algorithm as currently designed (Section 3.2) assumes that
an initial feasible solution is provided by the candidate design and
utilizes a heuristic solution based on the absolute difference between
the most heavily loaded processor and the least loaded, taking into
account the goal growth reservation to distribute the process load.

3.1.3 Storage Utilization and Growth Balance

Storage utilization, u s may be expressed for each memory unit,
m=] to M, as:

. B
1
u = — 2: £ .8, Sum of blocks
n L- b=1 w “ub stored divided
by total memory
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As with the processor balance formulation, storage utilization cannot
exceed the capacity of the device.

u <1 for m=1 to M
m

In addition, storage growth balance can be established with a
respective goal utilization, 8y? and an absolute limit, 8 for each
memory as follows:

M-1 M
Minimize Z E (ui-gi) - (uj-gj)

i=l  j=i+l

vhere
u < 4 for m=l to M.
m m

As with the processor utilization, the solution technique
defined in Section 3.2 for storage utilization is based on a heuristic
driven by the most used and least used memory allocations with respect to
input goals.

3.1.4 Development Cost

Software development costs are a function of task complexity and
programming support tools available. In particular, the heterogeneous
multiprocessor system adds another development cost concern, i.e.,
coding of a task to perform on more than one processor type. A common
program scurce language significantly reduces duplicated coding efforts.
Thus, the development cost for a given software task, t, in the model may
be stated as:

P

l)t = E [dtp xtp one-time development
p=1

+ 6:9 x':p resource manager development

- dtp ycp ] duplicate utilization.

where

ytp = 0 for p=1

- ' i = -'
max l\ipt X i for i 1 top 1’ for p>1
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where —xi = 1, if an identical source language is
available on processor i and p (i # p) for
task t

= a technology~-specified constant if differ-
ent languages are to be used (i #p)

= 0, if i = p.
I1f the code already exists, then dtp=0.

Note that the multiplicative factor for determining Yen Can be stated as
an equivalent series of linear constraints because of fhe zero-one vari-
able x__ (task t is either assigned to processor p or it is not). These
(p-1) cOnstraints are enumerated as follows for a given task t on proces-
sor p (for p >1).

<
e
1A
o

Apt Xe1 T

IA
o

\2pt Xe2 ~ ytp

A(p-1)pt Xe(p-1) Yep = 0.

With this set of constraints, minimizing y__ in the achievement function
ensures that y__ will assume the appropriate maximum as defined in the
original defintfion.

The goal objective for software development cost is now stated

Minimize Z D,.

t=1

=3

This is basically a problem of reducing development cost. The design
attempted to reduce development cost (Section 3.2) to be less than a user
supplied value, D, where D represents a ballpark estimate for the total
software development. The unit used may be man-years or dollars, depend-
ing on units established for the technology data base (described in
Section 4.2), which will be used to translate the task t instruction mix
(Section 4.2) to its one-time development cost (dtp) for processor p.

25
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The common language coefficient, \. _, is also a function of the tech-
nology-processor-related data (Section 4.2) and the language factor
selected for the task.

3.1.5 Real-Time Task Resource Requirements

The major constraint areas interact with the objective priority
evaluations to further specify acceptable partitioning attributes. As a
minimum, the following constraints apply to basic task resource require-
ments and processor accountability:

(a) Each task, t, must be assigned to at least one processor.
This implies T constraints of the following:

P

E x. 21 for t=1 to T.
p=1 tp

(b) If more than one processor is permitted to perform the same
task, a resource management overhead will be allocated to
task t processors via the processor utilization objective
of Section 3.1.2. However, to ensure that x, is properly
coupled with etp’ the following constraint nust be applied:

e
x -tz 0.
tp Nt

In addition, constraints must address task iteration rate and task ser-
vice times to ensure that real-time task timing requirements are met:

(a) Given that task t must be executed N_ times during the
problem time period, T, the task iteration rate constraint
is:

P

p=1

(b) If overlap of task t execution is not permitted (i.e., t
cannot be executing on more than one processor at a time),
the following constraint applies:

P
. «

(ctp + rtp) e¢p = minimm (T, N, St)

p=1




where St is the maximum time limit for ome execution of task
t'

Note that if

ctp + rtp > St

then e can be automatically assigned a zero value and
deletedPfrom consideration.

Task data dependencies must also be satisfied. These constraints

include:

(a)

(b)

(c)

All data blocks associated with task input must be availa-
ble to the processor(s) that are permitted to perform the
task. Thus, for imput block Lti’ the following holds:

M

-xtp * E ampsm"vti 20

m=1
for i=1 to It’ t=l to T, p=1 to P.

All data blocks associated with task t's output must reside
in memory storage m, which can be updated (changed) by any
of task t's processor(s) p. If Xep satisfies

xtp + xtp =1

then for a given task output, block b-oto’ the following
holds:

M
xtp+uxtp+ 2 wmpsmb_hb > 1
o=l

for t=]1 to T, o=1 to 0_, p=l to P. h, represents the number
of different memories that have duplicate copies of block
b; thus, this constraint requires all duplicate blocks to
be updated (see next constraint set).

Any duplicate data blocks must be held to a minimum; there-
fore h, may be thought of as a penalty to be added as an
additional objective function with the following additional
constraint:

e SN ik st e, ¥ o m
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(d)

(e)

hy = 1 (at least 1 block is in memory)

and

E sy ~ My =0

u=]

for b = 1 to B.

Input timing must properly account for the number of task t

executions on processor p (et ) for each task input block,
Lei? i=1 to I P

M
®p " 2, mpei " O
m=1
amgt:i
a . - =
and mp 8. . N > 0 for m=] to M

ty t

are used to ensure that Lti is available on memory m.
Output timing must account for the number of task t execu~-
tions on processor p (etp) for each task output block, ©

?
o=] to Ot: to

IA
o

o Vmpto " N, - smoto)

and

w
8 - mpto > 0 for m=] to M
Wop "m0, N

are used with a corresponding achievement function that
minimizes w to ensure that all duplicate blocks of ¢

mpto to
are updated.
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3.1.6 Performance Simulation Feedback

Sections 3.1.2 through 3.1.5 comprise the fundamental model
objectives and constraints that must be set in terms of a valid static
allocation of tasks. Performance bottlenecks detected by the simulation
mode being developed under separate contract {(No. F33615-79~C-0003)
will add additional constraints and/or modify coefficients. In particu-
lar, the data transfer objective coefficients for given interfaces
between a memory and a processor may be readjusted to penalize use of
certain processors for a given task and/or memories for certain data
block allocations.

A stronger set of timing constraints may be required for depend-
ent software task threads. A task thread, F,, may be defined as a group
of serially dependent tasks with the following notation:

Fk -{fkl, so00y fkck}

where f indexes one of the T tasks. In general, task f must have
execute&gc percent before task Pk can be enabled. Thus§ the tasks
defined as &Sthread are not permittJ%'ko run simultaneously in parallel
processors. This constraint may be written for each thread k as follows:

P
2 2 (thk (ctp + rtp) ep * Rep xtp) < minimum {7, T, }
teEF, p=1

k

for k=1 to K, and T, represents feedback timing for thread K. A further
assumption is that if task t is an element of a software thread, F, , then
task t may not be an independent task or an element of another task
thread. If a task is required in more than one way, it can be defined as
a group of different tasks for partitioning purposes.

In general, these threads represent critical system task path
flow bottlenecks as determined by the performance simulation of a given
partition allocation. The algorithm introduces new or revised con-
straints until one of the following conditions exists:

(a) Satisfactory solution found
(b) 1Infeasible condition identified
(c) Maximum feedback iterations performed.

The current solution state is to be saved and/or printed for future
evaluation as requested by the user evaluator.
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3.2 ALGORITHM DESIGN HIGHLIGHTS

There are many mathematical program techniques, including both
linear and nonlinear optimizers and heuristics. The partitioning model
requires integer solution values that immediately classify it as a non-
linear global optimization problem even though the model itself consists
of linearly expressed objectives and constraints. In addition, two of 4
the three achievement priority functions (i.e., balance the processor
load and balance memory storage) are nonlinear in their formulation of
minimizing the sums of absolute differences. These nonlinear goals
combined with the goal program matrix, which is sized according to the
parameters represented in Table 1, would be a challenge to both sizing
and timing of commercially available mixed integer linear program models
] with a single achievement priority.

To determine the viable design alternatives, a study of goal
programming was made, including several military goal program applica-
tions that have been implemented. Applications included weapon system
slice optimization in relation to planning force analysis and a balanced
budget allocation model for mixed project/agency funding. Both of these
applications interface goal programming models with other analysis tools
(such as simulation, input/output analysis, and regression analysis) to
provide a set of automated operational evaluation tools. These
additional tools provide a means to cross-check and supply detailed
model data values that are used to calibrate the goal program model. The
calibrated model is then used for selected parametric studies to
determine impact on solutions in terms of parametric margins and
solution sensitivities. Both of fhese applications utilize modified
versions of the classical textbook '~ multiphase goal program computer
algorithms. A major drawback to these codes is their susceptibility to
numeric roundoff error propagation for problems involving more than 50
to several hundred variables and constraints. In addition to the
numerical roundoff errors, the multiphase codes studied do not use
dynamic core memory management. This requires the entire matrix and
agsociated bookkeeping variables reside in main memory.

In lieu of funding the development for a mixed integer goal
program optimizer for larger problems, an alternative algorithm is the !
sequential use of a good commercially available linear program optimizer ,
interfaced via a goal program driver that introduces each achievement
one at a time. This permits continuous solution problems with up to
16,000 rows to be handled, given adequate dynamic disc storage. Current
state-of-the~art integer solutions are restricted to several hundred

1
! Ignizio, James P., Goal Programming and Extensions, D. C. Heath and i
Company, Lexington, Massachusetts, 1976 i

2 Lee, Sang M., Goal Progrsmming for Decision Analysis, Auerbach Pub-
lishers, Philadelphia, Pennsylvania, 1972
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variables. The sequential use of a linear program optimizer is the
approach recommended for further study in addressing a subset of the
software partitioning algorithm as designed in this study. The design
has remained independent of a specific computer optimizer code.

Even with the sequential mixed integer linear program technique,
the sizing of the partitioning problem (given in Table 1) is prone to
challenge the best optimizers without some careful matrix selection gen-
eration techniques. There are two major areas of concern:

l. The time consumed in determination of an initial feasible
solution

2. Excessive iteration thrashing to determine "optimal" integer
solutions.

The study of goal programming included a survey of heuristic techniques
that can facilitate the search for improved solutions given an initial
feasible solution. In practice, application-customed heuristic algo-
rithms have provided an efficient means for handling and reducing the
large solution space of alternatives to be searched.'

In the case of flight trainer candidate designs, the designers
have an implied partition which can be used as the initial solution. The
partitioning problem then becomes one of "Does a better solution exist
with respect to load balance, memory balance, and development cost?" The
incorporation of an initial solution step has been recommended as an
implementation step requiring further study for obtaining an expanded i
evaluation capability. The current algorithm design assumes that an B
initial solution is supplied and proceeds in a heuristic manner to seek a 3
better solution. ’

|
I

To achieve a well-defined user evaluator interface of partition-
ing input data, a customed heuristic goal program driver, and solution
summary capabilities, the Partitioning Algorithm for Software Systems
(PASS) has been designed emphasizing the four major processes denoted in i
Figure 2:

1. User input interface and processing referenced as PASSI
2, Basic partitioning algorithm referenced as PASS2

3. Augmented partitioning algorithm (PASS3) to handle dynamic
performance prediction feedback

' Ignizio, James P., "Solving Large Scale Problems: A Venture into a New ¥
Dimension,"” Pennsylvania State University, 1978
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4, Solution summary reports (PASS4) of a given partition for
candidate design i.

Prior to describing each of these steps, the overall design flow of the
steps and their interfaces is presented.

The major external interface (exclusive of an optimizer) with
PASS include the evaluation user and a multiprocessor configuration per-
formance predictor simulator. The user interface consideratioms for
actual implementation are expanded in Section 4, with emphasis on
incorporating a modular, automated data repository to facilitate input
preparation of PASS] and maintenance of current flight trainer design
parameters with respect to given partitions (PASS4). The performance
predictor interface is designed to interact with the Computational Per-
formance Predictor Simulator (CPPS) being specified and designed under
separate contract. The iterative process of determining a new alloca-
tion (PASS3) based on performance prediction feedback is performed until
one of the following conditions is reached: (a) satisfactory partition
is found, (b) design bottleneck is identified, (¢) maximum iterations
have been reached.

3.2.1 Input Processing Step PASS!

The mathematical statement of Section 3.1 contains software,
hardware, and combined software/hardware parameters. The design efforts
of this study have emphasized the separation of any combined parameters
into basic hardware and software components with the aid of technology
data base tables and computational formulas necessary to generate the
given "combined" parameter. Thus, all task/processor and data/memory
parameters are derived from independent software and hardware design
configuration inputs (see Section 4.2).

The specific inputs are defined in Appendix A. Figure 3 deline-
ates the major design process flow for user input editing and computa-
tional sequences to properly set up for the actual partitioning steps
that follow. The design demonstration (Appendix C) provides the
detailed computations to map the user input into the internal partition-
ing algorithm control and lookup tables listed in Table 2. Appendix B
provides representative report formats for the user input echo, which
consists of the reports listed in Table 3.

3.2.2 Basic Partitioning Algorithm (PASS2)

This step provides the basic controls and logic for interfacing
with the three user-ordered heuristics to determine whether an improved
partitioning solution can be found. As mentioned in the introductory
remarks on design in Section 3.2, the basic assumption is that an initial
feasible (with respect to real-time constraints) partition is supplied.
The resultant basic partitioning algorithm flow is denoted in Figure 4 as
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TABLE 2.  INTERNAL PARTITIONING ALGORITHM CONTROL AND LOOK-UP
TABLES ESTABLISHED BY PASS 1

TABLE TITLE

Limits, Constants, and Codes

Current Problem Sizing Controls

Priority Controls

Current Processor List

Current Memory List

Current Communication Link List

Current Internal Device List

Task/Processor Allocation and Restrictions
Memory/Processor Allocation and Restrictions

Block/Memory Allocation, Restrictions, and
Coefficients

Master Block List

Master Task List

e e A AR
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TABLE 3.  USER INPUT ECHO REPORTS THAT ARE SPECIFIED IN APPENDIX B

FORMAT* | REPORT TITLE

1 Standard Run Identification

Hardware Component Summary

Data Block Summary
Task Summary

Baseline Load Summary

Evaluation Options/Restrictions

Evaluation Priorities

(o] ~ (= IS ) | L) w N

Basic Partitioning Problem Size

* Format reference to Appendix B
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being comprised of initial solution verification, heuristic control
table setup, and user-specified, priority-ordered heuristic executions.

There are threz basic heuristic algorithms corresponding to the
three objectives or achievement functions: processor utilization
(LOADBL), memory utilization (MEMBAL), and development cost (RDCOST).
Figure 5 denotes the major selection branch as being a function of the
user-specified priority execution order GOAL (g), where g is the current
priority level being executed. Prior to invoking the appropriate heu-
ristic, a test is made to determine whether the basic priority goal level
has already been achieved. If so, a return is made to proceed to the
next priority level.

The major features incorporated, in the design permit ranking of
the current partition solution variables with respect to impact on the
given priority under consideration. The following ranking definitions
are utilized for each of the respective heuristics:

1. For the load balance heuristic, processor p's utilization,
, is subtracted from its goal, G_, to define U'_ =G - U_.
Tﬁe resultant U' array is then ranﬁed from high tB 1owPvalubs
(i.e., those below their goal to those above their respec-
tive goal in order of difference magnitude). The resultant
ranked array is then used to determine whether the load is
currently in balance, i.e., (U', - U'  GTOLPU) with respect
to a user-supplied tolerance (GTbLPU) %or processor utiliza-
tion. The object is to offload some of the tasks from the
heavily utilized processors to the lighter loaded processors
to obtain a better balance, as denoted in Figure 6.

2. For the memory balance heuristic, the allocated memory, um,
is subtracted from its goal allocatlon, g , to define u' =
9g “Up The resultant array, u' hen ranked (in a
similar fashion as processor ut“ﬁlzat1on) to determine
vwhether the current memory allocation is in balance accord-
ing to the user-supplied goal (u'l -u' GTOLMU). The
objective (Figure 7) is to reallocate some of the blocks
from the over-allocated memories to the under-allocated
memories to obtain a better balance.

3. . The development cost is a minimization problem of individual
task development cost. Thus, the tasks are ranked from most
expensive to least expensive. The ranked cost array can
then be systematically processed (Figure 8) to determine
whether a more cost-effective solution is possible (i.e.,
can this task be implemented on another processor in the
candidate configuration of less development expense and
still meet real-time constraints?). It should be noted that
this priority is only applicable to a heterogeneous set of
candidate processors.
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Figure 7. Memory allocation balance heuristic.
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. For each of the heuristics, checks are incorporated to ensure
that real-time limitations are not violated by any subsequent new
"improved" solutions found by the respective heuristic. Design emphasis
was placed on the order for incorporating these checks within the heu-
ristic procedure to avoid excessive calculations when easily determined
restrictions would prohibit exploring a given tradeoff. For example,
when attempting to reallocate a task to another processor, only those
processors that may perform the task are considered. To solve some of
the more complex interrelated real-time constraints, a linear program
statement might be studied to determine whether effective utilization of
an optimizer would be feasible for performing the given tradeoff. The
current algorithm incorporates a specific check of constraints as formu-
lated in Sections 3.1.5 and 3.1.6,

The heuristic driver continues at each priority level until it
has exhausted its systematic exchange tradeoff search for an improved
measurement. The three priority levels are executed in the order as
specified by the user evaluation priority inputs of PASSl. The basic
computational and logical sequence flows for each of the three priority
levels are denoted in Figures 6, 7, and 8, respectively.

3.2.3 Augmented Partitioning Algorithm (PASS3)

This step is an expansion of the PASS2 processes with emphasis on
resolving identified performance bottlenecks of the following types:

l. Cycle or thread timing is not sufficient for real-time
system response.

2. Specific candidate component (i.e., processor, memory, com-
munication link) utilization is unacceptable.

The basic process decision flow is depicted in Figure 9.

Recognizing that manual user evaluation insight may help expe-
dite the search for an improved partitioning, process PA 3100 facili-
tates the option that the current allocation can be manually modified.
Once any modifications have been processed, the performance data are
processed via PA 3200 to readjust coefficients and to set up additional
constraint generation controls. The new constraints are then con-
structed and their basic impact on the current partition is assessed in
terms of solution feasibility. Each performance bottleneck is processed
individually, in a predetermined order of criticality during this pro-
cess (PA 3300).

If a cycle or thread is the bottleneck, then the respective re-
source management and data communication links are examined to determine
the major bottleneck within the thread or cycle. Penalty coefficient
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ad justments are made to the processor utilization equation. An alter-
nate partition is sought that satisfies the end-to-end time requirement
of the given cycle or thread under these more stringent constraints.

If a component is above its allotted utilization, a check as to
processor or memory balance bottleneck is made. If it is a processor,
the processor heuristic is used to offload the offending processor. If
it is a memory problem, an attempt is made to find a faster access memory
or add a duplicate block if shared memory access is the bottleneck.

As the processing of bottlenecks is performed, the augmented
heuristic driver invokes PASS2 partitioning modules interspersed with
additional checks for maintaining the appropriate thread and/or cycle
constraints. If a new partition is found to be acceptable, it is saved
for feedback to the performance simulation and further manual analysis.
1f not, the problems are identified for user evaluation. Appendix D
contains the detailed design flows necessary to fully enumerate the
algorithm. Additional changes are anticipated as the details of the
performance simulator design are enumerated under Contract No. F33615-
79-C-0003.

3.2.4 Solution Summary Reports (PASS4)

The report generation features of PASS4 are designed to provide
printed summaries of a partition found by either PASS2 or PASS3 for a
given candidate configuration. The specific formats chosen present the
partition solution from five complementary, but different, aspects,
including (a) partitioning priority level measurements, (b) task alloca-
tions, (c) data block allocations, (d) processor allocations, (e) memory
allocations.

Figure 10 reflects a modular design flow based on user requests
for any of the reports for a given partition j of candidate configuration
i. This particular report generation capability should be implemented
for access from batch job control, special user codes, as well as inter-
active displays to obtain maximum evaluation flexibility to automati-
cally recall and/or print alternative partition solutions for a given
candidate.

Specific output report formats are presented in Appendix B. The
design demonstration, Appendix C, has sample output reports for user
reference.

3.3 FEASIBILITY DEMONSTRATION

In deriving a meaningful, yet simple, sample problem, specific
preliminary design material was obtained from Williams AFB with regard
to an ongoing expanded design for the Advanced Simulation for Pilot
Training multiple processor visual computational support subsystem. The
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preliminary design material provided a realistic source of the format
for ongoing trainer computational design input. It also included a mix of
general-purpose and special-purpose processors. The information in this
memorandum provided a good base for generating a sample problem; how-
ever, the resulting sample problem required simplification of the con-
figuration described to permit a flexible, yet easy-to-follow, manual
demonstration problem to be obtained.

The design factors in the original problem were very restrictive
as to Central Processing Unit (CPU) task assignments and thus left very
little room for alternative partitioning. This reinforces the fact
that, in software design, tasks tend to be defined in terms of the
selected hardware configuration features to meet computational needs, as
opposed to specifying application computations and then matching tasks
to the hardware selection. For the partitioning algorithm to be applica-
ble to alternative allocations and partitions, the major feasibility
issue concerns design language and means for inputting the problem
definition from which the partitioning model is to operate. These issues
are discussed in Section 4.

For demonstration purposes, overview inputs, restrictive inputs,
and detailed inputs have been incorporated to illustrate various aspects
and paths of the partitioning process and to point out the tradeoffs in
utilization of detailed inputs versus general estimates. The complete
algorithm feasibility demonstration is included as Appendix C to this
report. The basic order is the sample problem definition, user input
sheets, user input echo summary, basic partiticuing priority calcula-
tions, sample performance feedback contingcncies, and solution summary
outputs.

Figures 11 through 13 illustrate the major partitioning compon-
ents as extracted and simplified from a set of Williams AFB ASPT prelimi-
nary design notes for the visual subsystem. The overall processor con-
figuration is denoted in Figure 11. The memory and external communica-
tions are illustrated in Figure 12 to include both private and shared
memory devices. It also includes processor-to-processor direct data
transfer. Figure 13 denotes the simplified task flow used for demon-
strating the input and output steps of the algorithm. The tasks of
Figure 13 may be further divided into more detailed tasks for demonstrat-
ing and testing specific features of the partitioning algorithm, once an
automated version of the algorithm is implemented.

The sample demonstration (delineated in Appendix C) permits the
definition of potential automated implementation processes for handling
real-world partitioning problems. The examples demonstrate the feasi-
bility of an automated tool. Section 4 provides recommended implementa-
tion steps for verifying and validating the partitioning tool. These
steps will require that the basic algorithm be automated to properly
evaluate and demonstrate its performance characteristics for more rea-
listic partitioning problems that tend to be of larger size than the
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manual demonstration examples. The manual examples will permit the '
basic logic to be verified for a controlled, small-scale application

prior to "cranking out" large-scale partitioning problems. This will

permit an initial level of confidence to be established in the automated

version.




4. MODEL IMPLEMENTATION CONSIDERATIONS

To successfully implement the software partitioning algorithm,
an up-to-date technology data base for the flight training simulator
computational devices is essential. This section delineates the data
collection process and decision steps recommended for potential automa-
tion and quality control of the algorithm defined in Section 3. This
section has been organized to go from an overview of the candidate design
evaluation environment into a detailed evaluation support data base
repogitory description, followed by computer selection criteria and the
recommended implementation schedule for automation of the software
partitioning evaluation algorithm.

4.1 FLIGHT TRAINING SIMULATOR EVALUATION ENVIRONMENT

Typically, the development of flight training simulator candi-
date designs for the Air Force are contracted out by the Simulation
System Program Office (ASD-SD24). The computational subsystem design
development is monitored and evaluated by the Deputy of Engineering
Simulation (ASD-EN). 1In some cases, the flight trainer development is
directly contracted by a specific system office (such as in the case of
the F-16 trainer). Currently, the contracted organization has the pri-
mary responsibility for establishing both hardware and software require-
ments of the computational system, subject to certain Air Force guide-
lines and training capability objectives. The candidate design evolves
through an iterative refinement of documentation and algorithm enumera-
tion analysis, which typically progresses from system specification
functional flows followed by the detailed enumeration of the candidate
design. Each of these levels has narrative descriptions interspersed
with a variety of technical charts, drawings, tables, flow diagrams,
interface definitions, etc.; however, as denoted in Figure 14, the
volume of documentation for a training simulator quickly becomes
unwieldy unless documentation traceability and content standards are
adhered to and enforced via constructive reviews, which are geared to
detecting and correcting errors early in the development phase.

This effort has specifically addreased the software partitioning
aspects of candidate design evaluation. The three major outputs of the
partitioning algorithm are measures of the processing load balance,
memory utilization, and estimated development implementation cost based
on given timing and sizing input requirements of the respective tasks and
data load for a given candidate configuration. For effective use of the
software partitioning algorithm, the underlying mathematical model of
Section 3.1 must be understood in terms of the processor utilization,
memory utilization, and development cost formulations, which are the
primary outputs.

I T kS T




TRAINER SYSTEM SPEC

o POSITIONS |
o CONFIGURATIONS
¢ COORDINATION - CONTROLS

SUBSYSTEM INTERFACE SPECS

o COMMUNICATION PRIORITIES
o DATA FREQUENCY AND FORMATS
¢ FUNCTIONAL DESCRIPTIONS

SUBSYSTEM DESIGN DOCUMENTS

CREW POSITION - AIRCRAFT - INSTRUMENTATION
CONTROLS - SWITCHES - ELECTRONICS
HYDRAULICS - WEAPON SYSTEMS - DISPLAYS
AUDIO - VISUAL - MOTION - FORCE - NAVIGATION
TERRAIN - INSTRUCTIONAL OPERATIONS - SCORING
COMPUTATIONAL

Figure 14. Hierarchy of flight trainer documents, which relates to candi-
date design evaluation, can quickly become unwieldy if content
and traceability standards are not adhered to or enforced.
The simulator computational subsystem interfaces with and
coordinates a large number of the trainer simulator sub-
systems,

e
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To obtain reliable outputs, a consistent, systematic procedure
needs to be established with appropriate configuration management and
quality assurance provisions and controls. The major implementation
consideration for such a procedure is the establishment of a consistent
data repository for pertinent flight trainer computational design data.
No central repository for Air Force flight trainer computational designs
currently exists, although various organizations (such as ASD-EN) do
have their own evaluation data repositories.

During the course of this contract, it was learned that the Naval
Training Equipment Center (NTEC) in Orlando, Florida, does have a
repository of all documentation associated with Navy training devices to
include the computational subsystem, NTEC recently modified the
required Data Item Descriptions related to the computational subsystem
to be an integral part of training device development in conjunction with
a proposed Appendix A to the trainer specification, MIL-STD-1644,
entitled "Trainer Software Design, Control, Production Testing and
Acceptance Procedures and Requirements." This proposed specification
incorporates the top-down structured design approach with minimum stand-
ards that are required of each milestone document and its associated
review content, error detection/correction actions, and milestone com-
pleteness determination. The procedures are in basic agreement with the
development cycle presented in Section 2.1. This set of documents per—
mits a consistent repository to be established and maintained for cur-
rent reference and analysis input for new development considerations.
Unfortunately, it is still primarily a manual information storage and
retrieval system when it comes to accessing data pertinent to software
partitioning.

The factors identified in Section 3.1 that influence optimal
software allocation (such as: data block, task, processor, and memory
descriptions) remain the same regardless of the system assumptions or
presentation format., Indeed, these factors (Table 4) must typically be
extracted from more than one document to obtain the complete set of input
and constraint parameters defined in the mathematical statement of
Section 3.1. To assist in the review of documents with respect to
software partitioning of the computational subsystem, the supporting
data base parameters have been segmented into five major areas with
respect to flight trainer simulator:

1. Trainer Computational Interface Requirements
2. Baseline Application Components
3. Candidate Hardware Configuration Components

4. Technology Data Base
S. Evaluation Criteria/Constraints and Partitioning Load.

Figure 15 reflects the interactive nature of these data base areas with
respect to technology capabilities and the development cycle up through
the completion of the design but prior to actual implementation and test-
ing. The upper area relates to milestone documents of the training
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TABLE 4. DEVELOPMENT DOCUMENTS AND THEIR
RELATIONSHIP TO THE PARTITIONING
ALGORITHM FOR SOFTWARE SYSTEMS

DOCUMENT(S)

INPUT AREA

Computational Subsystem
Interface Specification

Software Design and
Data Base Specifications

Hardware Configuration
Design Specifications

External Device Interfaces

Required Components
Functional 1/0 Map

Communication Rules
and Priorities

Baseline Load(s)

Data Block Descriptions
Task Descriptions

Task Threads

Baseline Load(s) Tasking

Processors
Memor ies

Interfaces (Internal and
External)

Communication Rules
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SPECIFIC TRAINER DEVELOPMENT

CANDIDATE
SOFTWARE &
HARDWARE
SPECIFICATIONS

COMPUTATIONAL
INTERFACE &
FUNCTIONAL
REQUIREMENTS

COMPUTATIONAL
CANDIDATE
DESIGN
PARTITIONING &
EVALUATION

— — v —— — — —

MEMORIES
PROCESSORS,

& COMMUNICATION
DEVICE
INTERFACES

TRAINING,
INSTRUCTOR,
& OPERATION
DEVICE
INTERFACES

TECHNOLOGY CAPABILITY
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Figure 15.

Computational design evaluation must relate a specific design
fn terms of current technology capabilities for both external
comiunications and internal computational subsystem details.
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computational interface requirements, software design, and hardware
design respectively. The lower half represents the technology data
base, which permits an sbbreviated means for entering the design details
on which the partitioning algorithm is to operate. The left half relates
the devices to be serviced by the computational subsystem, and the right
half reflects the internal computational subsystem structure organiza-
tion and devices.

Although the data are extracted from independent sources, it re-
quires interactive coordination and configuration controls to ensure
that accurate, up-to-date, best estimates are utilized for the evalua-
tion at hand. The evaluation criteria and constraint inputs facilitate
configuration controls, parametric analysis, and partitioning flexi-
bility with respect to prohibited and/or preassigned allocations in
addition to initial allocations. The details of this segmented data base
are nov described in terms of implementation considerations.

4.2 DATA BASE MANAGEMENT

Two major recommendations are being made to facilitate orderly
consolidation of the storage and retrieval for each of the five data base
areas that provide the driving source of information for the partition-
ing algorithm and candidate design evaluation process. These recom-
mendations are as follows:

1. The addition of a standard set of candidate design specifi-
cation tables that address the software and hardware designs
as independent sets of parametric measures.

2. The establishment of a design evaluation data base reposi-
tory utilizing an interactive file management system under
the configuration control of ASD/ENETC.

This subsection supplies key factors that should be evaluated and modi-
fied as necessary to facilitate an orderly tramsition to an automated
algorithm implementation as presented in Section 4.4. Proper utiliza-
tion will require a training indoctrination as to the potential benefits
to both the flight trainer developer and evaluator communities. Before
the recommended input forms are described, several master data struc-
tures are delineated that have a direct influence on validity of data
entries and provide the key to independent software and hardware design
characterization.

4.2.1 Master Data Structures

These master structures include (a) data block characterization,
(b) memory characterization, (c) task characterization, and (d) proces-
sor characterization.

pperen—cuwprm————tr T LD T




Combinations of these structures are incorporated into the
recommended forms for each of the five data base input areas presented in
Appendix A. v

4.2.1.1 Data Block Characterization - Data characteristics such
as source, volume, frequency, content, and destination are the real-time ‘
drivers of the computational subsystem from both external device and in- 2
ternal tagsk communications, command, and control. Table 5 denotes at- ¥
tributes required by the software partitioning algorithm for each data
‘ block that is acted upon or created by the computational subsystems being
partitioned. Note that these attributes do not tie the data block to a
' specific storage device. Only external system blocks are identified as
being related to a given type of peripheral interface; for example, a
cockpit control setting input buffer block has a definite source device
that must be wmonitored at a predetermined sample rate. On the other
hand, the data to be computed by one task and used by a sequentially
dependent task are described in terms of minimum storage device require-
ments for their storage and retrieval utilization. These master block
definitions are then referenced by the block identification when refer-
enced in the task descriptions (Section 4.2.1.2) or in evaluation allo-
cation restrictions (Section 4.2.3).

4.2.1.2 Memory Characterization -~ A wide variety of memories

may be incorporated into a candidate design configuration for a flight

trainer. For purposes of partitioning, memories are categorized (as de-

noted in Table 6) to include read-only memory (ROM), writable control

stores (WCS), main random access memory (RAM), rotating random access

mem ory (RRAM), and sequential memories (SM). Within each of these

categories are additional retrieval and storage characteristics for data

representations of addressable units. These representations permit the

‘ generic data block parameters of Section 4.2.1.1 to be matched with

{ appropriate memory devices in the candidate configuration for which
partitioning is being performed.

4,2,1.3 Task Characterization - Specification of task attri-

i butes, which are independent of the processing hardware, poses a very
L4 challenging problem area for incorporating the traditional hardware-

f dependent design customs and notations that have evolved not only in
flight training simulator design but computational system designs in
general. At this point in software design history, several emerging
philosophies for design standards seem to be contradictory concerning
the level of specification and the documentation language used to convey
the detailed software algorithms to be implemented. At one extreme is b
the use of English-like structured pseudo code, which is favored for its
features of being easy to follow and comprehend. On the other hand,
there is an emphasis for precise, unambiguous mathematically enumerated
representations that provide the specific computations but, if not
annotated with English descriptions, they become very hard to follow,
except for persons who are very familiar with the specifics of the
algorithm. Most designs are generally a mixture of these two approaches,




TABLE 5. DATA BLOCK CHARACTERIZATION
ATTRIBUTE VALUES UNIT/MEANING
Identifier 6-Character Provides a unique identifier
Mnemon ic for cross-reference and
labeling purposes
Level 1 Character
= '§ System Interface
= G’ Global {used by more than
one task)
= 'L Local to one task but must
be saved
= T Temporary scratch area for
a given task
Discipline 4-Character Code Provides basic [/0 requirement
for determining suitable
memory device allocation
= 'FIFQ! Queue
= 'LIFO’ Stack
= 'SEQ' Sequent ial
= ‘RAN' Random
= 'ROR* Ready-Only Random
= “ROS! Ready-Only Sequential
= 'CBUF' Circular Buffer
Sizing
o Maximum Records Positive Integer Records
o Bits/Charac- Positive Integer Bits
ter
¢ Characters/Word Positive Integer Bytes
o Average Words/ Positive Integer Words
Record
o Maximum Words/ Positive Integer Words
Record
o Minimum Words/ Positive Integer Words
Record
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TABLE 6.

MEMORY DEVICE CHARACTERIZATION

ATTRIBUTE VALUES UNIT/MEANING
Identifier 10-Character Provides a unique identification
Mnemon ic for each memory device in the
technology data base for which
the following attributes define
Type 4 Characters
= '‘ROM' Read Only Memory
a 'RAMM! Random Access Main Memory
= ‘RRAM' Rotating Random Access Memory
= 'SM' Sequential Memory
= 'WCS’ Writable Control Store

Size in Bits

¢ Minimum
o Maximum
o Increments

Number of
Different
Addressable Units

For Each
Addressable Unit

o Leve!

e Bits/Unit
Level

¢ Read Access
Time

o Read Cycle
Time Unit

® Maximum
Sequential
Units Trans-
ferred for
Single Read

o Write Access
Time

Positive Integer
Positive Integer
Positive Integer

Positive Integer

4-Character Code
= '3IT!

= '68B'

= 'g68"'

= 'WORD'
Positive Integer
Real

Real

Positive Integer

Real

Bits
Bits
Bits

Bit Addressable

6-Bit Byte Addressable
8-Bit Byte Addressable
word Addressabie

Exclusive of Parity or Error
Deletion Correction Bits
Nanoseconds

Nanoseconds

Same as Unit Level

Nanoseconds

T
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TABLE 6. MEMORY DEVICE CHARACTERIZATION (Sheet 2 of 2)

ATTRIBUTE VALUES UNI T/MEANING
e Write Cycle Real Nanoseconds
Time/Unit
o Maximum Positive Integer Same as Unit Level
Sequential
Units for
Single Write
Access
# Error Detection/ | 6-Character Code
Correction = "PARITY Parity Bit
= 'SECOED’ Single 8+t Error Correction
Double Bit Error Detection
Number of Sup- Positive Integer
pliers for Each
Supplier
o ldentifier 10 Characters Unique Identifier
o MTBF Real Hours - Mean Time Between
Failures
o MTTR Real Hours - Mean Time to Repair
e MSPM Real Hours - Rescheduled Preventive
Maintenance
o MTPM Real Hours - Mean Time fur Preven-

tive Maintenance
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which facilitates the overall functional flow, high-level presentation
and permits a traceability structure for enumeration of detailed design
computations and decision logic.

The remaining problem area of design specification relates to
the specific notation. Certain aspects of flight trainer computational
algorithms have become well-defined, i.e., aircraft flight kinematics.
These algorithms are generally used for making benchmarks on new candi-
date processors. Thus, for well-established algorithms, a master set of
simulation task benchmarks can be established for each candidate proces-
sor being considered. New algorithms require a more fundamental break-
out of the instruction mix to ascertain timing and sizing elements. In
summary, a master set of software task attributes are presented in
Table 7. The establishment of a master instruction mix, task 1/0
descriptors, and task enablement features is recommended as one of the
steps (Section 4.4) toward algorithm implementation. Related to this
master instruction mix is the development language for task code genera-
tion. Recent trends in simulator coding have incorporated FORTRAN code
for the scientific mathematical application models, but there is still a
strong dependence on the assembly level code for expressing real-time
executive and I/0 handler modules to meet the real~time timing require-
ments. The selection of a task design instruction mix notation should be
coordinated with the simulation high-order language efforts and proces-
sor instruction architectures.

One way to obtain this information would be the use of a graphi-
cal task flow representation, which included a standard design notation
to indicate the imnstruction sequences, loops, and relationships with
1/0. A flow notation, such as TBE's Input/Output Relationships and
Timing Diagrams, can be automatically traversed with the instruction mix
and 1/0 features being identified and reformatted for use with the parti-
tioning algorithm. This would require that a standard flight trainer
computational design language and flow representations be established,
thus providing a standardized way for documenting the detailed task
computational designs.

An important note is made here regarding the traditional means
of expressing task sizing and timing in terms of adds, multiplies,
branches, etc. The instruction mix need not be at the machine level.
Instead, it should reflect a set of simulation macros, such as single
variable linear table interpolation, and trigonometric functions. Each
of these, in turn, is characterized for each candidate processor as to
timing and sizing. If the simulation macro has been implemented in
firmware or as part of a mathematical package, the sizing is reduced in
terms of the main instruction storage for the task.

4.2.1.4 Processor Characterization - Processor technology is
constantly expanding in terms of operating system and instruction set
capabilities. Table 8 lists processor attributes that pertain directly
to the software partitioning algorithm. The operating system features
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TABLE 7. TASK CHARACTERIZATION
ATTRIBUTE VALUES UNIT/MEAINING
ldentifier 6-Character Provides a unique identifier
Mnemonic for cross-reference and

Source Language

Instruction Mix
for Each Instruction
Type:

o Instruction Iden-
tifier
e Sizing Count

o Execution Count
Average
Worst Case

Data Retrieval for
rEach Task Input

¢ B8lock Identifier
# When

¢ Average Input
¢ Minimum Input

o Maximum Input

10-Character
Code

10-Character
Code

Positive Integer

Positive Integer
Positive [nteger

6 Characters
6-Character Code
= 'START'

= 'ALONG'

Positive Integer

Non-Negative
Integer

Positive Integer

labeling purposes

Must match entry in the
master source language

1ist maintained for current
processor technology

Must match entry in master
simulator instruction mix
identifiers

Number of times this instruc-
tion appears in code

Number of instruction inter-
actions considering looping
conditions for average and
worst-case logic

See Table §

All recérds read at first
of task before main proces-
sing

Records processed one at

a time

Records
Records

Records




TABLE 7. TASK CHARACTERIZATION (Sheet 2 of 2)
ATTRIBUTE VALUES UNIT/MEANING
Data Storage for Each
Task Output:

e Block Level 1 Character See Table 5
e Block Identifier 6 Characters See Table 5

¢ When

o Average Output
® Minimum Qutput

¢ Maximum Output

Enablement
o Type

e Frequency 1
o Frequency 2

e Frequency 3

6-Character Code
= 'ALONG'

= 'END'

Positive Integer

Non-Negative
Integer
Positive Integer

4-Character Code

= 'TIME'
- lmrkl
= ‘'SLVD*
= 'TAD'

Real
Real

Real

Records are output via indi-
vidual processing

Records are output just prior
to task exit

Records
Records

Records

Time Enabled
Data Enabled
Slaved to Master Task
Time and/or Data Enabled

[terations/Second for Time
Enablement

[terations/Second for Data
Enablement

Iterations/Second for Slaved




TABLE 8.

PROCESSOR CHARACTERIZATION

ATTRIBUTE

VALUES

UNIT/MEANING

Identifier

Operating System
e Multitasking
A lLevels

& Number of
Priority Levels

o Enablements

A Maximum Time
Enablement
Frequency

A Resource
Management per
Time Enablement

A Maxirum Data
Enablement
Frequency

A Resource
Management per
Data Enablement

A Maximum Slaved
Enablement
frequency

& Resource
Management per
Slaved Enable-
ment

10 Characters

Integer
.GE.1

Integer
LE Levels

Integer

F1¢.9.6E.9
Integer
F19.9.GE.9
integer

F19.9.GE.9

Unique identifier for pro-
cessor with the following
attributes

These many levels are ser-
viced in a priority fash-
ion, The remaining levels
are serviced in a circular
time-shared fashion.

Enablements/Second

Micrcseconds

Enablements/Second

Microsecond

Enablements/Second

Microseconds
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: TABLE 8, PROCESSOR CHARACTERIZATION (Sheet 2 of 3)
ATTRIBUTE VALUES UNIT/MEANING
P e For Each Task
3 Level L
: A Maximum Number Integer .GE.1
of Task Level L
ATask Service Code
Scheme for
. Level L
k- ' ap Priority
1 : s 'C* Circular
3 = ‘F! First-in, Fir.t Out
o Level Resource f19.9 .GE.0 Microseconds
Management
Simulation Instruction
Set Measurements for
Each Benchmark

Instryction 1

e Sizing
Measurements

A Nymber of Code
Memories
Involved -

The Memory Type for 4-Character Code Must agree with master
Each Code Memory m memory types defined in
(the first memory is Group 4

the user task code --
any other memories are
predefined for this

processor)
4 Length of Code Integer .GE.l Number of basic units used
in Memory m to describe memory m (see

\

Group 4)

covm— s

o tim s
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TABLE 8. PROCESSOR CHARACTERIZATION (Sheet 3 of 3)

ATTRIBUTE

VALUES

UNIT/MEANING

¢ Timing Measurements
for Each Code
Memory m and k=1,2

A Number of Scratch
Data Store Waits

A Number of Scratch
Data Store Waits

A Computational
Total for ANl
Memor ies

o Application Develop-
ment Measurements
Using Language L of
the Master Language
List

A One Item Develop-
ment Charge

A Change per Appli-

cation Instruction
of this Type

Integer .GE.O
Integer .GE.#

Integer .GE.Q

Integer

Integer

k=] Implies Average
k=2 Implies Worst Case

Cycles

Man-hours

Man-hours




applicable to software partitioning relate to multitasking disciplines,
limits, and resource management services. The instruction set is
{ ’ characterized in terms of the master simulation instruction set as
described in Section 4.2.1.3, along with attributes for user memory 1/0
versus preprogrammed resources plus development cost estimates.

4.2.2 Suggested Input Forms

The forms, as designed, may be used directly by a data keying
operator to produce keypunched cards or entry directly onto a file via an
interactive data entry terminal. Specific physical file formats are not
specified since they will be a function of selected computer file image
capabilities described in Section 4.3. Because of the volume of input
sheets, they are presented in Appendix A for each of the data base files.

During the design of the input forms, emphasis was placed on
consolidation and cross-reference techniques that facilitate an organ-
ized straightforward user input interface. The software partitioning
algorithm requires an assortment of specific data to fully define
trainer system interfaces plus computational hardware and software
design details that must be accurate if a good partition allocation is to
be obtained. The separation of forms is based on the five major input
areas, and it is recommended that these areas be standardized for pre-
senting the respective interface requirements, software task/data design
relationships, candidate hardware design configuration, technology capa-
bilities, and evaluation priorities, including the candidate initial
design allocation as a starting point for partitioning optimization.

4.3 TARGET COMPUTER AND SOURCE LANGUAGE SELECTION

The selection of the computer system for the partitioning algo-
rithm should consider, as & minimum, the following features, which must
be incorporated to facilitate automatic implementation of the partition-
ing algorithm and its potential expansions:

1. Data base management system

2. Structured program language

3. Modified linear mixed integer program optimizer
4. Computational speed and accuracy.

Each of these features is described in more detail in the follow-
ing paragraphs.

4.3.1 Data Base Management System

; The interrelated, yet separate, data files (described earlier in
| this section) of the recommended flight trainer automated repository are
i best implemented under a standard data base management system that




permits creation, update maintenance, and configuration management of
all data and program files. It is recommended that system data file
management utilities be available to the user in several different
modes, including batch job control, interactive terminal commands, and
user program code directives to permit a flexible, yet controlled, data
access enviromment. Direct record access capsbility is an essential
feature for implementation of the software task and block description
plus the technology data base files.

The amount of data is a function of the flight training simulator
computational candidate designs to be evaluated. Table 9 provides an
abbreviated summary of sizing relationships for each record type group
contained in the respective files required for the partitioning algo-
rithm. The data base management should include memory management of code
and data required for execution. Internal tables utilized by the algo-
rithm are sized in Table 10. The algorithm code is estimated to be
10,000 lines of structured FORTRAN exclusive of potential data manager
and optimizer extensions.

4.3.2 Structured Program Language

Evaluation code (code used to facilitate manual analysis) is a
very useful tool if it can be maintained under configuration control and
permit expansion to wmore detailed models when necessary for a given
evalustion analysis. Structured source code facilitates modulsrity and,
thus, permits model expansion. Several source languages are included
here as candidates for the partitioning algorithm implementation,
including FORTRAN 77, JOVIAL, and ADA., These languages were selected
based on current DOD-approved languages and language development activi-
ties. Pros and cons for each are now presented.

The widespread recognition of FORTRAN for scientific and mathe-
matical programming makes it the preferred language of the three lan-
guages considered. The newest ANSI FORTRAN 77 standards incorporate
character manipulation, which is independent of machine architecture.
Its use of structured logic includes both true and false process defini-
tions without the use of extraneous "GO0 TO's.” File manipulation capa-
bilities have also been expanded to include file status checks and
standardization of certain types of data storage/retrieval mechanisms
that have previously required vendor-peculiar FORTRAN extensions. Some
problems may be encountered with new compilers being released to meet the
new FORTRAN standards, but these cowpilers should evolve rather quickly
to support most of the ANSI 77 features. This will result in code that
is wore easily transported from one machine to another. This is an
important aspect, since the partitioning algorithm does not require a
dedicated computer system, and as such, it is envisioned as being a
useful tool for flight training simulator developers and maintenance
reconfiguration analysts, as well as for Air Force evaluators. Each of
these specialists generally has his own in-house computer system
tailored for specific analysis needs.
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TABLE 10.

INTERNAL ALGORITHM TABLE SIZING REQUIREMENTS

TABLE WORDS
IPT NO. TABLE TITLE (60-bit words)
1 timits, Constants, and Code 20
2 Current Problem Sizing Controls 9
3 Priority Controls 28
4 Current Processor List P*(13+i)
5 Current Memory List 11*M
6 Current Communication Link List (3+3*QND)*9
7 Current External Device List (4+DB)*d
8 Task/Processor Allocation and 9*T*p
Restrictions
9 Memory/Processor Communications (4+4e)*M*p
Allocation and Restrictions
10 Memor y/Block Allocation and S*M*B
Restrictions
11 Master Block List (114M+2T)*B
12 Master Task List (16+51+6*B+e)*T
13 Scratch and Local Parameters To be Defined
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JOVIAL is mentioned because of its recognition by the Air Force
as a standard language for embedded computer systems development. A
major drawback is its limited I/0 capabilities, which is a major factor
with regard to the partitioning algorithm's large data base handling
requirements.

ADA is also mentioned since it is the DOD language being
developed with source language standardization as a major goal to sup-
port software development of new military computational subsystems. The
on-going compiler developments are limited to experimental compilers and
compiler design efforts. Therefore, at this time it is not a feasible
candidate for actual algorithm development and testing. It will be 2 to
3 years before it is available in an operational development setting.
Further implementation/expansion should wonitor and consider ADA since
its features will permit more configuration control as well as the struc-
tured expression of concurrent process control flows, I/0, and computa-
tions with concise data base definition,

In conclusion, FORTRAN is the recommended language for imple-
mentation of the partitioning algorithm.

4.3.3 Modified Linear Mixed Integer Program Optimizer

The partitioning algorithm has the potential for future inter-
faces with a modified linear program mixed integer program optimizer.
The current algorithm design is based on a heuristic algorithm driver
that assumes that an initial feasible partition exists with respect to
the basic real-time processing requirements of data availability, task
timing, and less than 100% processor/memory allocation. From this
initial feasible solution, it seeks to determine and make improvements
on the initial partition with respect to three goals: (a) processor load
balance within given growth allotments, (b) memory utilization within
growth tolerances, and (c) minimization of development costs. Although
heuristics do not guarantee an optimal solution, it is anticipated that
the complexity of priorities and data constants will change frequently,
which makes the finding of the true optimal a meaningless exercise.
Bowever, optimizers can be employed to help find an initial feasible
solution and to find optimal subset solutions under the control of the
heuristic decision tree. In the case of the partitioning algorithm, the
initial feasible solution poses the largest problem in terms of sizing
and numeric accuracy techniques that are required. Table 1 summarizes
the optimizer sizing as a function of the size of candidate designs to be
evaluated.

4.3.4 Computational Speed and Accuracy

Although the partitioning algorithm is not as demanding as real-
time simulation or control codes, it is important that it be able to
support quick-turnaround evaluation runs to expedite the given evalua-
tion case. The complexities of the processor utilization calculations
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in terms of task computations, resource management, and I/0 are iterated
with respect to potential processor tradeoffs for load balance calcula-
tions that involve a variety of attributes. Since the basic computations
are subject to mathematical model expansions and changes, floating point
capabilities are recommended to permit new equations to be introduced,
as required, without the burden of fixed-point scaling.

Units have been selected to keep related variable numeric order
of magnitudes within computational limits of most scientific machines.
These units should be periodically examined as technology advancements
are made. For example, many current real-time flight trainer applica-
tion cycles are based on l-sec intervals with subcycles or subframes
measured in terms of milliseconds. As timing improvements are made,
these may take on smaller increments of time for application cycling,
hence the need for their periodic reappraisal. Anoiher factor is machine
cycle time, which is currently measured in nanoseconds; thus, certain
calculations involving memory I1/0 must be accumulated separately to
obtain totals that can then be used to determine any appreciable I/0
timing for tasks that handle large volumes of data in addition to compu-
tational processing. Typically, 32-bit floating point can represent six
significant digits. Thus, if a basic unit is assumed to be 1 sec, the
nanosecond effectively.is disregdrded unless accumulated separately.
However, if either double precision (64 bit) or 60-bit single precision
is used, there is no problem. An alternative is for task memory 1/0,
resource management, and individual instruction timing computations to
be accumulated for total task time in microseconds, and then task times ‘
may be added separately for a given application cycle time in terms of !
current task/cycle relationships. Thus, there is the need for floating f
point, with a minimum of 32-bit words sufficing for most operations, and A
either segmented units or double precision variables to account for {

1
!
I
|

T el

application subtask timing computations.

The use of preemptive priorities rather than weighted priorities
permits processor loading, memory allocation, and development costs to
remain in their standard units without any input scaling and output
rescaling. However, in each priority level, numbers for a given task or
data block should be summed separately from totals being used for total
memory or total processor utilization to avoid underflow accumulation
problems.

4.4 RECOMMENDED IMPLEMENTATION SCHEDULE

The major tasks and their hierarchical relationships are
depicted in Figure 16. Each of these tasks is briefly described in this
section with cross-references to appropriate report sections for related
details. Although some parallel task sequences are depicted, there are
some interdependencies, as denoted in Figure 16. These interdepend-
encies are basically handled at major detailed reviews, which are recom-
mended to be held quarterly to assess the implementation progress, to
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VALIDATION COMPUTER OPTIMIZER
PLAN INTERFACE SELECTION INTERFACE
) 2.2 . 2.4
ESTABLISH DESIGN CODE/VERIFY DESIGN
MODEL REPOSITORY BASIC OPTIMIZER
VALIDATION PROGRAMS ALGORITHM PROGRAMS
PROCEDU , ,

SCRIPT DEVELOP DEVELOP
VALIDATION REPOSITORY OPTIMIZER
PROCEDURE PROGRAMS PROGRAMS
DATA i
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Figure 16. Algorithm implementation tasks.
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ensure that interface definitions are adhered to, and to establish more
detailed interfaces as the appropriate operational consideration details
become known.

Figure 17 groups the tasks into four major implementation phases
over a 2.5-year period. There is an overlap between Phase I1l and Phase
IV, with the major emphasis of Phase III placed on basic (as currently
designed) algorithm validation and witn Phase IV emphasis on an expanded
validated model incorporating an optimizer for selected aspects of the
partitioning algorithm. The implementation tasks are now described by
phase. To make a complete task statement, there is some redundancy with
earlier report sections. Cross-references are made to avoid excessive
redundancy.

4.4,1 Model Validation Plan and Selected Computer Interfaces

Although the candidate computer selection aspects have been de-
scribed (Section 4.3), the specific computer implementation must be fur-
ther delineated to obtain a practical partitioning allocation and eval-
uation tool for flight trainer simulator computational candidate design.
Existing evaluation computer facilities should be reviewed for current
formats and data collection procedures in addition to the current com-
puter capabilities to contribute basic inputs to the Phase I tasks, which
are now briefly described.

4.4.1.1 Validation Plan - The sample problems manually demon-
strated under this contract have verified the feasibility of the parti-
tioning algorithm design. However, they do not constitute a model cali-
bration case from which a confidence level of model validity may be
derived. As evidenced in the mathematical statement of the partitioning
problem (Section 3.1), there are many interrelated variables and factors
that drive the partitioning process, necessitating some parametric auto-
mation techniques to fully analyze the automated design validity and
stability for real-world data. The validation plan will permit con-
trolled algorithm implementation testing to determine its validity with
regspect to known partitioning situations of selected flight training
simulator computatational designs. By addressing evaluation partition-
ing problems to be handled prior to algorithm coding, the evaluation
community is essentially establishing the foundation for the algorithm
acceptance test with respect to its role as an evaluation tool.

As a minimum, the validation plan should identify the flight
trainer system(s) to be used as the algorithm implementation baseline.
It should also extrapolate intended sizing of the algorithm application
in terms of the number of each data base item described in Section 4.2
(i.e., number of tasks, blocks, processors, memories, etc.). A set of
test cases should be drafted in an outline format as to specific algo-
rithm features to be incorporated and tested for both the basic model and
the expanded model.
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4.4.1.2 Data Base Interface - The specific flight trainer com-
putational design repository format and data base management utilities
should be delineated by this task. This includes finalization of the
user interface formats (such as those contained in Appendix A) and the
format by which the partitioning algorithm may retrieve its inputs and
store its outputs with respect to the repository and the interactive
and/or batch user.

This task incorporates the data collection, storage, and
retrieval mechanisms, plus quality assurance steps necessary for algo-
rithm implementation and usage. The repository data management should
incorporate responsible agencies for each input area and make maximum
use of pre-editing and file management utilities of the selected com-
puter system. The results of this task should be compiled in the form of
a users' manual for the flight trainer design repository and specifi-
cally address the partitioning algorithm interfaces. These interfaces
include the master design simulation language instruction set and guide-
lines for processor, memory, task, and data baseline descriptions
(covered in Section 4.2) that will streamline the orderly preparation of
inputs and permit gradual controlled growth into a fully tested and
implemented repository system for multiple evaluations.

4.4.1.3 Computer Selection - Computer candidate selection has
been discussed in Section 4.3. This task ties Phase I activities
together to determine the specific coding standards and interfaces to be
employed for algorithm implementation for a given computer facility.

4.4.1.4 Optimizer Interface - This task permits the long-range
interface goals to be defined for potential optimization steps in the
heuristically driven partitioning algorithm. This is a major area for
further study and, as such, is recognized in Section 5.3.

4.4.2 Automated Algorithm Verification and User Design
Foundation

Phase 11 permits the initial automation of the basic algorithm
and delineates additional programs that will aid in the bookkeeping and
increase computational confidence levels of an expanded partitioning
algorithm. Each of the tasks is now defined.

4.4.2.1 Establish Model Validation Procedures - This task
expands and enumerates the test cases outlined in the test plan of Phase
I. The nature of the basic partitioning algorithm is to seek and, if
possible,-find an improved partition of tasks. Thus, the test procedures
must inglude the means for reconfiguring the subject flight trainer for
which J%pupposedly "better" partition has been found. In addition,
related performance measurements of the newly partitioned configuration
must be specified as to what and how they are to be collected and
evaluated to access the predicted partition improvements of the parti-
tioning algorithm. To assist in this step, the multiple processor
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simulator being designed under separate contract may be used to provide a
quick look at the dynamic aspects of the new partition prior to making a
reconfiguration decision. All of these considerations must be placed
into a timeline for algorithm validation testing to account for permis-—
sible reconfiguration in the partitioning restriction. For example, if
special-purpose tasks may only reside on special-purpose processors,
they should be declared as such in the partitioning algorithm evaluation
options. Thus, realistic, measurable validation test procedures are the
goal of this task.

4.4.2.2 Design Repository Programs - The users' manual of Phase
I will undoubtedly require specific repository storage/retrieval pro-
grams to be designed to augment the system-supplied data base capabili-
ties to support the flight trainer evaluators "input jargon" and to
efficiently handle the input and subsequent updates to each of the vari-
ous files to ensure consistency and completeness of any given repository
transaction. The results of this task constitute the detailed design of
each and all repository programs to be implemented in Phase III.

4.,4.2.3 Code/Verify Basic Algorithm -~ This task is the most
straightforward of all of the tasks and simply entails the coding, debug-
ging, and verifying of the basic algorithm as designed and demonstrated
as part of this subject contract. This provides the working baseline for
all future expansion in both model repository and optimizer interfaces.
The results of this task provide a source code listing, verification test
case execution outputs, and documented interpretation.

4.4.2.4 Design Optimizer Programs - The emphasis of this task is
to be placed on upgrading and complementing an existing mathematical
optimizer package selected in Phase 1 with respect to computational and
logic needs peculiar to the partitioning application. This task
requires extensive knowledge and experience with mathematical optimiza-
tion codes and their numerical stability in terms of accuracy, scaling,
iteration, and masking techniques that can judiciously expedite the
solution space search for initial feasible solutions. The task also
requires knowledge and experienc:. with optimal subproblem solutions as
called by the heuristic driver of the basic algorithm. The results of
this task will comprise the detailed design of programs to be implemented
to support the optimizer interface.

4.4.3 Basic Model Validation and Expanded Program Interface
Development

This critical phase permits the large-scale, real-~world data
assessment of the basic algorithm to be made. The first part of Phase
111 is associated with specific data collection, scripting, and support
program coding. The latter part of this phase incorporates efforts of
the first part for basic algorithm validation testing. In addition, the
optimizer programs are developed in preparation for the Phase IV
expanded model. Each of the Phase III tasks is now described.
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4.4.3.1 Script Validation Data - Validation input data must be
collected and prepared utilizing the validation input procedures for
each test case for basic algorithm and expanded algorithm validation
cases. A test case can not proceed until its basic inputs have been
properly prepared.

4.4.3.2 Develop Repository Programs - The programs designed in
task 2.2 of Phase II are coded, debugged, and verified by means of
validation input procedures to assist in the input processing of
task 3.1.

4.4.3.3 Develop Optimizer Programs - This task codes and debugs
the programs designed in task 2.4 of Phase II in preparation for expanded
algorithm verification and validation of Phase IV,

4.4.3.4 Validate Basic Algorithm - Each validation test case is
made in the order prescribed in the test procedures. If any problems are
encountered, their impact on the test plan and case procedures must be
fully evaluated to determine what action, if any, is necessary to con-
tinue the test program. All test execution reports should be included as
appendices to the test summary report. It is anticipated that certain
validation tests can be run prior to complete implementation of the
repository to exercise the fundamental paths of the algorithm.

4.4.4 Expanded Model Verification, Validation, and Formal
Acceptance Testing

Phase IV paves the final path to the realization of the parti-
tioning algorithm as part of the standard flight trainer simulator comp-
utational design evaluation and/or design guide tool. The full reposi-
tory and added optimizer capabilities developed in the first three
phases are now integrated and tested to provide a controlled user inter-
face for multiple evaluation situations. The tasks are now defined.

4.4.4,1 Verify Expanded Model - This task consists of selected
basic algorithm test cases to verify that these cases are still properly
handled in the expanded model. In addition, new path verification tests
are incorporated by the designer to verify that new capabilities are
working as designed.

4.4,4.2 Validate Expanded Model - This task performs the exten-
sive testing as defined in the validation procedures for the extended
model. As with basic algorithm validation, if any problems are
encountered, their impact on the test program must be evaluated and it
must be determined whether any action is necessary for continuance of the
test program. All execution results should be included as appendices to
the test summary documentation.

4.4.4,3 Formal Acceptance Test - The complexity of the parti-
tioning algorithm and its potential evaluation decision-making impact
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necessitates the need for formal Government acceptance tests. These
tests should be scripted and performed by an independent orgamization to
fully assess the delivered capability with respect to completeness of
documentation, configuration, quality, and purpose. The major developer
is involved as a consultant to explain or expand documents and to respond
to any questions concerning the delivered operational package. It is
anticipated that Government flight trainer system evaluators will be
responsible for scripting and conducting these independent test proce-
dures since the test will serve as a training task that emphasizes the
intended operational user environment of the algorithm.

4.4.4.4 Final Report - The emphasis of this task is to be placed
on finalizing documentation of the automated algorithm capabilities,
findings, and conclusions. This documentation should be accompanied
with the final user, test, and program maintenance documentation for
specific program implementation details.
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5. CONCLUDING REMARKS

Software partitioning is a complex, design development/
evaluation, decision-making process with many tradeoffs to be analyzed
for selecting a good candidate flight training simulator computational
design for a particular operational trainer implementation or upgrade.
This section briefly summarizes the details presented in Sections 2
through 4 in terme of the study findings, related work, and areas for
further study.

5.1 FINDINGS

Candidate software designs expressed independently of candidate
hardware are the basic key design feature that permits software parti-
tioning flexibility. This is not the traditional design approach cur-
rently in use for system design. This project has defined the types of
design data that will permit independent assessment of baseline software
tasks for alternative multiple~processor configurations. The key data
areas are the establishment of a standard design language and an auto-
mated repository for the given application design data.

The partitioning algorithm has been designed as a general parti-
tioning algorithm for software systems, and it is the data collection
process (Section 4.2) that will make this algorithm unique for a given
application implementation. In this way, it is seen as a useful tool for
the evaluation of a wide variety of computational subsystem designs
since it is not constrained to current configuration, technology, or
application.

5.2 RELATED WORK

The results of this effort are closely coordinated with Contract
No. F33615-79-C-0003 for the AFHRL Advanced Multiple Processor Configu-
ration Study. The multiple-processor study is concerned with features
and techniques for assessing the predicted performance of given alterna-
tive candidate designs., The partitioning algorithm is looking at task/
data allocation from a static analysis point of view to ensure that real-
time computational requirements are met with a balanced load. The number
of entities that must be considered requires that parametric analysis in
terms of average or worst-case numbers be used in the partitioning
process. The dynamic environment of the flight trainer computational
task allocation requires the addition of network, queuing, and simula-
tion (batch mode) tools to predict and assess the performance of a given
allocation partition with respect to representative scenario loads and
resource mansgement rules. The multiple-processor configuration con-
tract is incorporating and expanding the conceptual repository to
include the dynamic performance design aspects that are pertinent to
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¥ alternative computational candidate design evaluations for operational
g flight trainers. The results of this related effort are to be published
g in the final report scheduled to be distributed on or about 31 Oct 80.

5.3 AREAS FOR FURTHER STUDY
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Advancements in systems development and training features are
sources of continuous change for flight trainer systems. A "good" system
today may be obsolete in 5 years or less if it does not possess modular :
H design capabilities. This is particularly true of the computational {
3 system, which must act as a coordinator, interface, and decision-maker
to assist the human operators and commanders to better perform their
jobs. As new/upgraded flight trainer systems are required, the basic
design models plus new/modified modules may very likely require reallo-
cation of new processor, communication, and memory technologies. Two ;
major areas of study have been isolated as the key to potential reali- £
zation of a truly automated software partitioning algorithm: 2

L

T

3 rLiprenr

1. The employment and expansion of mathematical, mixed integer,
program optimizer techniques for large-scale partitioning
with multiple objectives

2. The development of a master flight training simulator compu-
tational subsystem design repository.

These two areas have been incorporated as major tasks associated with
automation of the partitioning algorithm described in Section 4.4.

In conclusion, automated software partitioning is feasible., It
will require further study, design, and test steps that are directly re-
lated to computer facility selection for its implementation. The major
training simulator candidate design impact would be toward standardiza-
tion and separation of the software design representation and data from
processor hardware configuration representations and data, The results
of the standardization would permit a consistent flight trainer computa-
tional design automated repository to be established and used in both new
design and current design evaluation tradeoffs in the areas of software
partitioning and predicted performance of multiple-processor configu-
rations. The use of an optimizer will permit certain tradeoffs to be
automatically made and determined in a more straightforward manner, per-
mitting more time for manual evaluation comparisons and decisions.
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A.2 DEFINITIONS
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